Short Wave Infrared Band Assignments


N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).

M. Wang, W. Shi, L. Jiang, and K. Voss, “NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors,” Opt. Express 24(18), 20437–20453 (2016).

Q. Vanhellemont and K. Ruddick, “Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8,” Remote Sens. Environ. 161, 89–106 (2015).

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

R. Showstack, “Sentinel satellites initiate new era in earth observation,” Eos (Wash. D.C.) 95(26), 239–240 (2014).

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Remote Sens. 50(9), 3280–3292 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

P. D. Kunte, “Sediment concentration and bed form structures of Gulf of Cambay from remote sensing,” Int. J. Remote Sens. 29(8), 2169–2182 (2008).

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

M. Wang and H. R. Gordon, “Calibration of ocean color scanners: how much error is acceptable in the near infrared?” Remote Sens. Environ. 82(2-3), 497–504 (2002).

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

Z. Ahmad, B. A. Franz, C. R. McClain, E. J. Kwiatkowska, J. Werdell, E. P. Shettle, and B. N. Holben, “New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans,” Appl. Opt. 49(29), 5545–5560 (2010).

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

N. Pahlevan, J. R. Schott, B. A. Franz, G. Zibordi, B. Markham, S. Bailey, C. B. Schaaf, M. Ondrusek, S. Greb, and C. M. Strait, “Landsat 8 remote sensing reflectance (R rs) products: Evaluations, intercomparisons, and enhancements,” Remote Sens. Environ. 190, 289–301 (2017).

B. A. Franz, S. W. Bailey, N. Kuring, and P. J. Werdell, “Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS,” J. Appl. Remote Sens. 9(1), 096070 (2015).

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ. 114(10), 2238–2247 (2010).

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, “Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry,” Appl. Opt. 46(22), 5068–5082 (2007).

M. Wang and S. W. Bailey, “Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products,” Appl. Opt. 40(27), 4790–4798 (2001).

W. L. Barnes, T. S. Pagano, and V. V. Salomonson, “Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1,” IEEE Trans. Geosci. Remote Sens. 36(4), 1088–1100 (1998).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

C. Hu, L. Feng, Z. Lee, C. O. Davis, A. Mannino, C. R. McClain, and B. A. Franz, “Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past,” Appl. Opt. 51(25), 6045–6062 (2012).

B.-C. Gao, M. J. Montes, Z. Ahmad, and C. O. Davis, “Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space,” Appl. Opt. 39(6), 887–896 (2000).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

Z. Lee, S. Shang, G. Lin, J. Chen, and D. Doxaran, “On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain,” Appl. Opt. 55(7), 1738–1750 (2016).

E. Knaeps, K. Ruddick, D. Doxaran, A. Dogliotti, B. Nechad, D. Raymaekers, and S. Sterckx, “A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters,” Remote Sens. Environ. 168, 66–79 (2015).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanré, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59(3), 590–608 (2002).

B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization,” Remote Sens. Environ. 66(1), 1–16 (1998).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

J. I. Fishman, L. T. Al-Saadi, J. Chance, K. Chavez, F. Chin, M. Coble, P. Davis, C. DiGiacomo, P. M. Edwards, D. Eldering, A. Goes, J. Herman, J. Hu, C. Jacob, D. J. Jordan, C. Kawa, S. R. Key, R. Liu, X. Lohrenz, S. Mannino, A. Natraj, V. Neil, D. Neu, J. Newchurch, M. Pickering, K. Salisbury, J. Sosik, H. Subramaniam, A. Tzortziou, M. Wang, and J. Wang, “The United States’ Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA’s Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission,” Bull. Am. Meteorol. Soc. 93, 19 (2012).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

G. Zibordi, F. Mélin, J.-F. Berthon, B. Holben, I. Slutsker, D. Giles, D. D’Alimonte, D. Vandemark, H. Feng, G. Schuster, B. E. Fabbri, S. Kaitala, and J. Seppälä, “AERONET-OC: A Network for the Validation of Ocean Color Primary Products,” J. Atmos. Ocean. Technol. 26(8), 1634–1651 (2009).

The Landsat Multispectral Scanner (MSS) was carried on Landsats 1-5, and images consist of four spectral bands with 60 meter spatial resolution. The approximate scene size is 170 km north-south by 185 km east-west (106 mi by 115 mi). Specific band designations differ from Landsats 1, 2,and 3 to Landsats 4 and 5.

Landsat 1-5

Multispectral
Scanner
(MSS)

Landsat
1-3
Landsat
4-5
Wavelength
(micrometers)
Resolution
(meters)
Band 4 - GreenBand 1 - Green0.5-0.660*
Band 5 - RedBand 2 - Red0.6-0.760*
Band 6 - Near Infrared (NIR)Band 3 - Near Infrared (NIR)0.7-0.860*
Band 7 - Near Infrared (NIR)Band 4 - Near Infrared (NIR)0.8-1.160*

* Original MSS pixel size was 79 x 57 meters; production systems now resample the data to 60 meters.

The Landsat Thematic Mapper (TM) sensor was carried on Landsat 4 and Landsat 5, and images consist of six spectral bands with a spatial resolution of 30 meters for Bands 1-5 and 7, and one thermal band (Band 6). The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Landsat 4-5

Thematic
Mapper
(TM)

BandsWavelength
(micrometers)
Resolution
(meters)
Band 1 - Blue0.45-0.5230
Band 2 - Green0.52-0.6030
Band 3 - Red0.63-0.6930
Band 4 - Near Infrared (NIR)0.76-0.9030
Band 5  - Shortwave Infrared (SWIR) 11.55-1.7530
Band 6 - Thermal10.40-12.50120* (30)
Band 7 - Shortwave Infrared (SWIR) 22.08-2.3530

* TM Band 6 was acquired at 120-meter resolution, but products are resampled to 30-meter pixels.

The Landsat Enhanced Thematic Mapper Plus (ETM+) sensoris carried on Landsat 7, and images consist of seven spectral bands with a spatial resolution of 30 meters for Bands 1-5, and 7. The resolution for Band 8 (panchromatic) is 15 meters. All bands can collect one of two gain settings (low or high) for increased radiometric sensitivity and dynamic range, while Band 6 collects both low and high gain (Bands 61 and 62, respectively) for all scenes. The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Landsat 7

Enhanced
Thematic
Mapper
Plus
(ETM+)

BandsWavelength
(micrometers)
Resolution
(meters)
Band 1 - Blue0.45-0.5230
Band 2 - Green0.52-0.6030
Band 3 - Red0.63-0.6930
Band 4 - Near Infrared (NIR)0.77-0.9030
Band 5 - Shortwave Infrared (SWIR) 11.55-1.7530
Band 6 - Thermal10.40-12.5060 * (30)
Band 7 - Shortwave Infrared (SWIR) 22.09-2.3530
Band 8 - Panchromatic.52-.9015

* ETM+ Band 6 is acquired at 60-meter resolution, but products are resampled to 30-meter pixels.

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist of nine spectral bands with a spatial resolution of 30 meters for Bands 1 to 7 and 9. The ultra blue Band 1 is useful for coastal and aerosol studies. Band 9 is useful for cirrus cloud detection. The resolution for Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 are useful in providing more accurate surface temperatures and are collected at 100 meters. The approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Reference

Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232-10251. doi:10.3390/rs61010232

Landsat 8

Operational
Land Imager
(OLI)
and
Thermal
Infrared
Sensor
(TIRS)

BandsWavelength
(micrometers)
Resolution
(meters)
Band 1 - Ultra Blue (coastal/aerosol)0.435 - 0.45130
Band 2 - Blue0.452 - 0.51230
Band 3 - Green0.533 - 0.59030
Band 4 - Red0.636 - 0.67330
Band 5 - Near Infrared (NIR)0.851 - 0.87930
Band 6 - Shortwave Infrared (SWIR) 11.566 - 1.65130
Band 7 - Shortwave Infrared (SWIR) 22.107 - 2.29430
Band 8 - Panchromatic0.503 - 0.67615
Band 9 - Cirrus1.363 - 1.38430
Band 10 - Thermal Infrared (TIRS) 110.60 - 11.19100 * (30)
Band 11 - Thermal Infrared (TIRS) 211.50 - 12.51100 * (30)

* TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.

Spectral Characteristics Viewer
The Spectral Characteristics Viewer helps visualize the different satellite bands of Landsat and other sensors, along with selected spectra and convolving capabilities. Information about the different bands, and which bands to use can be found on this webpage.

0 Replies to “Short Wave Infrared Band Assignments”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *